Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zootaxa ; 5410(1): 134-144, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38480252

RESUMO

There are very few taxonomic studies of Brazilian sipunculan worms, and the species occurring along the northern coasts are largely understudied. We report herein the occurrence of four shallow water species along the intertidal zones of Bahia and Pernambuco states. Antillesoma antillarum (Grbe & Oersted, 1858) occurs from underneath beach rocks or within sandstone reefs and may reach high densities. The large species Sipunculus (Sipunculus) nudus Linnaeus, 1766, Sipunculus polymyotus Fisher, 1947, and Xenosiphon branchiatus (Fischer, 1895) were collected in sandy-mud, low-energy intertidal environments. For the first time, we report that sipunculans are collected and used as fishing bait by local fishermen in the Western Atlantic. All species are fully described, including notes on their external and internal anatomy.


Assuntos
Anelídeos , Nematoides , Animais , Brasil
2.
Zootaxa ; 4979(1): 190211, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34187005

RESUMO

Zootaxa has been the leading journal on invertebrate systematics especially within Annelida. Our current estimates indicate annelids include approximately 20,200 valid species of polychaetes, oligochaetes, leeches, sipunculans and echiurans. We include herein the impact of Zootaxa on the description of new annelid species in the last two decades. Since 2001, there have been over 1,300 new annelid taxa published in about 630 papers. The majority of these are polychaetes (921 new species and 40 new genera) followed by oligochaetes (308 new species and 10 new genera) and leeches (21 new species). The numerous papers dealing with new polychaete species have provided us a clear picture on which polychaete families have had the most taxonomic effort and which authors and countries have been the most prolific of descriptions of new taxa. An estimated additional 10,000+ species remain to be described in the phylum, thus we urge annelid workers to continue their efforts and aid in training a new generation of taxonomists focused on this ecologically important group.


Assuntos
Anelídeos/classificação , Animais , Publicações Periódicas como Assunto , Filogenia
3.
Mol Phylogenet Evol ; 107: 191-208, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27840226

RESUMO

The systematics of the molluscan class Bivalvia are explored using a 5-gene Sanger-based approach including the largest taxon sampling to date, encompassing 219 ingroup species spanning 93 (or 82%) of the 113 currently accepted bivalve families. This study was designed to populate the bivalve Tree of Life at the family level and to place many genera into a clear phylogenetic context, but also pointing to several major clades where taxonomic work is sorely needed. Despite not recovering monophyly of Bivalvia or Protobranchia-as in most previous Sanger-based approaches to bivalve phylogeny-our study provides increased resolution in many higher-level clades, and supports the monophyly of Autobranchia, Pteriomorphia, Heteroconchia, Palaeoheterodonta, Heterodonta, Archiheterodonta, Euheterodonta, Anomalodesmata, Imparidentia, and Neoheterodontei, in addition to many other lower clades. However, deep nodes within some of these clades, especially Pteriomorphia and Imparidentia, could not be resolved with confidence. In addition, many families are not supported, and several are supported as non-monophyletic, including Malletiidae, Nuculanidae, Yoldiidae, Malleidae, Pteriidae, Arcidae, Propeamussiidae, Iridinidae, Carditidae, Myochamidae, Lyonsiidae, Pandoridae, Montacutidae, Galeommatidae, Tellinidae, Semelidae, Psammobiidae, Donacidae, Mactridae, and Cyrenidae; Veneridae is paraphyletic with respect to Chamidae, although this result appears to be an artifact. The denser sampling however allowed testing specific placement of species, showing, for example, that the unusual Australian Plebidonax deltoides is not a member of Donacidae and instead nests within Psammobiidae, suggesting that major revision of Tellinoidea may be required. We also showed that Cleidothaerus is sister group to the cementing member of Myochamidae, suggesting that Cleidothaeridae may not be a valid family and that cementation in Cleidothaerus and Myochama may have had a single origin. These results highlight the need for an integrative approach including as many genera as possible, and that the monophyly and relationships of many families require detailed reassessment. NGS approaches may be able to resolve the most recalcitrant nodes in the near future.


Assuntos
Bivalves/classificação , Bivalves/genética , Filogenia , Análise de Sequência de DNA/métodos , Animais , Teorema de Bayes , Funções Verossimilhança
4.
Mol Biol Evol ; 32(11): 2860-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26205969

RESUMO

Annelid disparity has resulted in morphological-based classifications that disagree with phylogenies based on Sanger sequencing and phylogenomic analyses. However, the data used for the latter studies came from various sources and technologies, involved poorly occupied matrices and lacked key lineages. Here, we generated a new Illumina-based data set to address annelid relationships from a fresh perspective, independent from previously generated data and with nearly fully occupied matrices. Our sampling reflects the span of annelid diversity, including two symbiotic annelid groups (Myzostomida and Spinther) and five meiofaunal groups once referred to as part of Archiannelida (three from Protodrilida, plus Dinophilus and Polygordius). As well as the placement of these unusual annelids, we sought to address the overall phylogeny of Annelida, and provide a new perspective for naming of major clades. Our results largely corroborate the phylogenomic results of Weigert et al. (2014; Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol. 31:1391-1401), with "Magelona + Owenia" and Chaetopteridae forming a grade with respect to all other annelids. Echiura and Sipuncula are supported as being annelid groups, with Sipuncula closest to amphinomids as sister group to Sedentaria and Errantia. We recovered the three Protodrilida terminals as sister clade to Phyllodocida and Eunicida (=clade Aciculata). We therefore place Protodrilida as part of Errantia. Polygordius was found to be sister group to the scaleworm terminal and the possibility that it is a simplified scaleworm clade, as has been shown for the former family Pisionidae, is discussed. Our results were equivocal with respect to Dinophilus, Myzostomida, and Spinther possibly owing to confounding long-branch effects.


Assuntos
Anelídeos/classificação , Anelídeos/genética , Animais , Evolução Molecular , Filogenia , Poliquetos/classificação , Poliquetos/genética , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 83: 174-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450098

RESUMO

Sipunculans (also known as peanut worms) are an ancient group of exclusively marine worms with a global distribution and a fossil record that dates back to the Early Cambrian. The systematics of sipunculans, now considered a distinct subclade of Annelida, has been studied for decades using morphological and molecular characters, and has reached the limits of Sanger-based approaches. Here, we reevaluate their family-level phylogeny by comparative transcriptomic analysis of eight species representing all known families within Sipuncula. Two data matrices with alternative gene occupancy levels (large matrix with 675 genes and 62% missing data; reduced matrix with 141 genes and 23% missing data) were analysed using concatenation and gene-tree methods, yielding congruent results and resolving each internal node with maximum support. We thus corroborate prior phylogenetic work based on molecular data, resolve outstanding issues with respect to the familial relationships of Aspidosiphonidae, Antillesomatidae and Phascolosomatidae, and highlight the next area of focus for sipunculan systematics.


Assuntos
Filogenia , Poliquetos/classificação , Transcriptoma , Animais , Biblioteca Gênica , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA
6.
Front Zool ; 9(1): 33, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190771

RESUMO

INTRODUCTION: Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. RESULTS: cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. CONCLUSIONS: We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable catalogue of annotated genes (or gene fragments) and protein families for ten newly sequenced non-model organisms, some of commercial importance (i.e., Octopus vulgaris). These comprehensive sets of genes can be readily used for phylogenetic analysis, gene expression profiling, developmental analysis, and can also be a powerful resource for gene discovery. The characterization of the transcriptomes of such a diverse array of animal species permitted the comparison of sequencing depth, functional annotation, and efficiency of genomic sampling using the same pipelines, which proved to be similar for all considered species. In addition, the datasets revealed their potential as a resource for paralogue detection, a recurrent concern in various aspects of biological inquiry, including phylogenetics, molecular evolution, development, and cellular biochemistry.

7.
Mol Phylogenet Evol ; 65(1): 64-74, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22659514

RESUMO

Revived interest in molluscan phylogeny has resulted in a torrent of molecular sequence data from phylogenetic, mitogenomic, and phylogenomic studies. Despite recent progress, basal relationships of the class Bivalvia remain contentious, owing to conflicting morphological and molecular hypotheses. Marked incongruity of phylogenetic signal in datasets heavily represented by nuclear ribosomal genes versus mitochondrial genes has also impeded consensus on the type of molecular data best suited for investigating bivalve relationships. To arbitrate conflicting phylogenetic hypotheses, we evaluated the utility of four nuclear protein-encoding genes-ATP synthase ß, elongation factor-1α, myosin heavy chain type II, and RNA polymerase II-for resolving the basal relationships of Bivalvia. We sampled all five major lineages of bivalves (Archiheterodonta, Euheterodonta [including Anomalodesmata], Palaeoheterodonta, Protobranchia, and Pteriomorphia) and inferred relationships using maximum likelihood and Bayesian approaches. To investigate the robustness of the phylogenetic signal embedded in the data, we implemented additional datasets wherein length variability and/or third codon positions were eliminated. Results obtained include (a) the clade (Nuculanida+Opponobranchia), i.e., the traditionally defined Protobranchia; (b) the monophyly of Pteriomorphia; (c) the clade (Archiheterodonta+Palaeoheterodonta); (d) the monophyly of the traditionally defined Euheterodonta (including Anomalodesmata); and (e) the monophyly of Heteroconchia, i.e., (Palaeoheterodonta+Archiheterodonta+Euheterodonta). The stability of the basal tree topology to dataset manipulation is indicative of signal robustness in these four genes. The inferred tree topology corresponds closely to those obtained by datasets dominated by nuclear ribosomal genes (18S rRNA and 28S rRNA), controverting recent taxonomic actions based solely upon mitochondrial gene phylogenies.


Assuntos
Bivalves/genética , Proteínas Nucleares/genética , Filogenia , Animais , Teorema de Bayes , Funções Verossimilhança , ATPases Mitocondriais Próton-Translocadoras/genética , Cadeias Pesadas de Miosina/genética , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/genética
8.
Cladistics ; 27(5): 538-549, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34875797

RESUMO

The robustness of clades to parameter variation may be a desirable quality or even a goal in phylogenetic analyses. Sensitivity analyses used to assess clade stability have invoked the incongruence length difference (ILD or W ILD) metric, a measure of congruence among datasets, to compare a series of most-parsimonious results from re-running analyses under different analytical conditions. It is also common practice to select a single "optimal" parameter set that minimizes W ILD across all parameter sets. However, the divergent molecular evolution of ribosomal genes and protein-encoding genes-specifically the bias against transversion events in coding genes of conserved function-suggests that deployment of multiple parameter sets could outperform the use of a single parameter set applied to all molecules. We explored congruence in five published datasets by including mixed parameter sets in our sensitivity analysis. In four cases, mixed parameter sets outperformed the previously reported, single optimal parameter set. Conversely, multiple parameter sets did not outperform a single optimal parameter set in a case in which actual strong topological conflict exists between data partitions. Exploration of mixed parameter sets may prove useful when combining ribosomal and protein-encoding genes, due to the relatively higher frequency of single- and double-base pair indel events in the former, and the relatively lower frequency of transversions in the latter. © The Willi Hennig Society 2010.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...